Преобразователь весоизмерительный ТВ-006С

Руководство по эксплуатации

Версия программы С633

	Сооержание	
1	Общие указания	2
2	Назначение	2
3	Технические характеристики	2
4	Указания мер безопасности	
5	Подготовка к работе	
6	Режимы работы и индикации	5
7	Измерение веса (выполнение алгоритма управления	
	дискретными выходами) "brutto"	9
8	Ввод значений уровня дозирования "LEVELS"	10
9	Управление дискретными выходами "ContrL"	
10		15
11		16
12		16
13	Калибровка "CALibr"	17
14	-	
	выходами	17
	14.1. Простая отсечка «Грубо» и «Точно» "AL 0"	
	14.2. Суммирующий дозатор "AL 1"	18
	14.3. Вычитающий дозатор с автоматической	
	загрузкой бункера "AL 2"	21
	14.4. Вычитающий дозатор с загрузкой бункера после	
	подачи сигнала пуск "AL 3"	23
	14.5. Суммирующий дозатор с загрузкой бункера по	
	первой команде пуск и выгрузкой по второй	
	11 3	23
	14.6. Суммирующий дозатор с автоматической настройко	
4 -	предварений "AL 5"	
15	Приложения	
	15.1. Возможные сообщения об ошибках	
	15.2. Задняя сторона ТВ-006С	
	15.3. Назначение контактов нижнего ряда клемм	
	15.4. Назначение контактов верхнего ряда клемм	
	15.5. Пример подключения входов/выходов	
	15.6. Отверстие для установки ТВ-006С	
	15.7. Протокол обмена стандарта «Тензо-М»	JJ

1 Общие указания

В настоящем руководстве по эксплуатации (далее по тексту – Руководство) приводится порядок работы с преобразователем весоизмерительным ТВ-006С (далее по тексту Преобразователь).

Перед эксплуатацией внимательно ознакомьтесь с настоящим Руководством.

Настоящее Руководство должно постоянно находиться с Преобразователем. В случае передачи Преобразователя другому пользователю Руководство подлежит передаче вместе с Преобразователем.

2 Назначение

Преобразователь предназначен для использования в составе весовых дозаторов в качестве вторичного тензометрического преобразователя и позволяет:

- 2.1 отображать результаты измерения веса;
- 2.2 управлять процессом дозирования путем включения и выключения дискретных выходов;
- 2.3 выдавать стандартный аналоговый сигнал пропорционально измеренному весу;
- 2.4 обмениваться информацией с другими устройствами через интерфейс последовательной передачи данных RS-485 согласно протоколу «Тензо-М».

3 Технические характеристики

- 3.2. Предел допускаемой абсолютной погрешности, приведенной ко входу, мкВ/В в интервале от 0 до 3 мВ/В±0,30
- 3.3. Среднеквадратичное отклонение случайной составляющей погрешности, %, не более0,01

3.5.	Минимальный входной сигнал на одно
	поверочное деление, мкВ
3.6.	Тип первичного преобразователя тензорезисторный
3.7.	Питание первичного преобразователя знакоперемен-
	ное, В5
3.8.	Тип линии связи с первичным преобразовате-
	лемшестипроводная
3.9.	Максимальная длина линии связи с первичным
	преобразователем, м20
3.10	Минимальное эквивалентное сопротивление
	подключаемых первичных преобразователей, Ом80
3.11.	Тип индикатора светодиодный
	Количество разрядов индикации веса ¹ 5
	Размер изображения одного разряда, мм 10 × 7
	Количество дискретных входов (светодиод оптрона) 4
	Напряжение дискретных входов, В24
	Входной ток дискретных входов, мА10
	Количество дискретных выходов (открытый коллектор)
	Максимальное коммутируемое напряжение, В 30
	Максимальный коммутируемый ток, А
	Количество аналоговых выходов1
3.21.	Варианты исполнения аналогового выхода:
	токовый, мА
	токовый, мА 020
	токовый, мА 024
0.00	напряжение, В 05
3.22.	Время установления рабочего режима,
	мин, не более
	Напряжение питания постоянного тока, В
	Потребляемая мощность, Вт, не более
	Рабочий диапазон температур, °С 20 ÷+50
	Атмосферное давление, кПа84 ÷ 107
3.27	Относительная влажность при 35°C.%, не более 95

¹ К<u>оличество разрядов индикации счетчиков – 6/9</u>

3.28	Степень защиты по ГОСТ14254-96	
	лицевой панели	IP65
	задней панели	IP42
3.29.	Габаритные размеры, мм	.118×96×48
3.30.	.Масса, кг, не более	1,0
3.31.	Полный срок службы ТВ-006С, лет	10

4 Указания мер безопасности

К работе с Преобразователем допускаются лица, изучившие данное Руководство и прошедшие соответствующий инструктаж по «Межотраслевым правилам по охране труда (правилам техники безопасности) при эксплуатации электроустановок» (ПТБ). Эксплуатация Преобразователя должна осуществляться по правилам, соответствующим «Правилам эксплуатации электроустановок потребителей» (ПЭЭП) и «Правилам устройства электроустановок» (ПУЭ).

5 Подготовка к работе

Подготовка Преобразователя к работе осуществляется следующим образом:

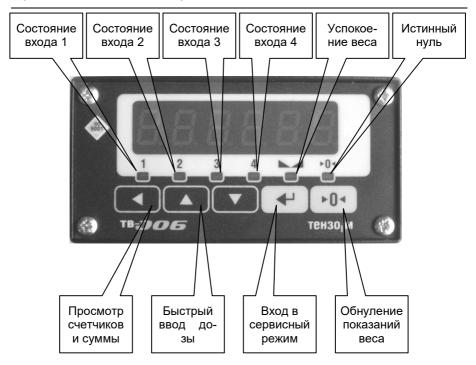
1) подключите тензодатчик(и) к Преобразователю;

Запрещается подключение и отключение кабеля тензодатчиков к соответствующему соединителю при включенном питании!

- 2) соедините экранную оплетку кабеля тензодатчиков с контуром заземления;
- 3) подключите к дискретным выходам соответствующие элементы управления. Если их сопротивление носит индуктивный характер, необходимо параллельно им подключить помехоподавляющие RC цепочки (R= 0,1 кОм, C= 0,1 мкФ). Подключите к дискретным входам 1, 2 и 3 датчики положения исполнительных механизмов, а к входу 4 цепи сигнала «Пуск». Если датчики положения отсутствуют, установите перемычки между соответствующими входами и выходами;

- 4) Питание Преобразователя должно осуществляться от двух независимых, гальванически развязанных, источников питания. Контакты питания нижнего разъёма Преобразователя должны подключаться источнику с сетевым фильтром;
- 5) Преобразователь высвечивает на индикаторе шесть «8», а потом установленную версию программного обеспечения. После этого переходит в основной режим измерения веса:
- 6) при высвечивании «Err» обратитесь к Приложению.

6 Режимы работы и индикации

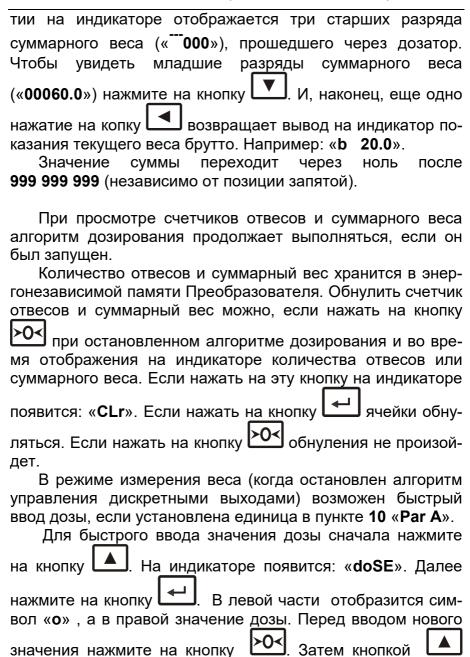

Преобразователь может работать в нескольких режимах: измерения веса (выполнение алгоритма управления дискретными выходами) просмотр счетчиков отвесов и суммарного веса или в сервисном режиме.

После включения питания Преобразователь находится в режиме измерения веса. При этом в левой части основного индикатора отображается символ «**b**», а в правой части измеренный вес.

Кроме того, на передней панели имеются дополнительные индикаторы:

Символ	Назначение	
1	Индикатор состояния входа 1	
2	Индикатор состояния входа 2	
3	Индикатор состояния входа 3	
4	Индикатор состояния входа 4	
	Индикатор успокоения веса	
>0<	Индикатор «истинного» нуля	

Преобразователь весоизмерительный ТВ-006С



Индикатор успокоения веса светится, когда *индицируемый вес* успокоился, т.е. не менялся в течение установленного времени (см. пункт **9** «Par A»).

При индикации веса производится округление измеренного веса с дискретностью отсчета **d**. Индикатор «истинного» нуля светится, когда неокругленный вес не превышает +/- ¹/₄ **d** от **нулевого** значения.

Обнуление показаний индицируемого веса при пустом дозаторе осуществляется с помощью кнопки **УОС**.

Переход в режим просмотра счетчиков отвесов и суммарного веса производится с помощью кнопки. При первом нажатии на кнопку отображается последний отвес «Р 20.0». При втором нажатии на индикаторе отображается количество отвесов («000003»). При следующем нажа-

или	V	методом	перебор	а устан	авливается	и кнопкой
					требуемое	значение.
Проц	есс в	вода заве	ршается	кнопкой	←].	

Переход в сервисный режим осуществляется через меню сервисного режима. Для входа в это меню нажмите на кнопку . На индикаторе появиться первый пункт: «brutto».

Название пункта меню	Режим
brutto	Выход из сервисного режима и переход к режиму измерения веса (выполнение алгоритма управления выходами)
LEVELS	Ввод значений уровней дозирования
ContrL	Управление дозированием: выбор алгоритма управления, логических уровней дискретных входов или тестирование дискретных выходов.
Par A	Ввод дополнительных параметров
Par C	Просмотр калибровочных параметров
Count	Просмотр и сброс фискальных счет- чиков
CALibr	Калибровка грузом или ввод калибро- вочных данных

Кнопками или выберете нужный пункт меню, например «LEVELS» и нажмите на кнопку. На инди-

каторе отобразится приглашение ввести пароль «попростов в все пункты сервисного режима осуществляется по паролю, кроме тестирования дискретных выходов, просмотра калибровочных параметров и перехода в режим измерения веса.

7 Измерение веса (выполнение алгоритма управления дискретными выходами) "brutto"

В данном режиме в левой части индикатора отображается символ «**b**», а в правой измеренный вес. В этом режиме (а также при просмотре счетчиков суммарного веса) выполняется алгоритм управления дискретными выходами. При измерении веса, если нагрузка превысила наибольший предел взвешивания (НПВ) более, чем на 9 единиц дискретности индикации («**d**»), на индикатор выводится сообщение «**ПЕРЕГР**».

1) возможно обнуление показаний веса кнопкой « роз», когда на индикаторе отображается вес, отсчитываемый от калибровочного нуля и не превышающий значения, установленного в п.3 **LEVELS**. Это значение можно установить не более 25% от НПВ.

При пустом дозаторе и закрытых выходах (Алгоритм 0 и

Ниже цифрового индикатора расположены светодиодные индикаторы состояний входов 1, 2, 3, 4, индикатор успокоения «► ◀» и индикатор нуля «>0<». Индикаторы 1, 2, 3 или 4 светятся, если по соответствующей входной цепи протекает ток.

В режиме измерения веса при алгоритмах 1, 2 и 3 Преобразователь проверят соответствие входного сигнала (от датчиков положения исполнительными механизмами)

Преобразователь весоизмерительный ТВ-006С

 $^{^{2}}$ Последовательное нажатие кнопок – \mathbf{V} , \mathbf{A} , \mathbf{V} , \mathbf{A} , \mathbf{A}

управляющему воздействию. Если соответствия нет, то выводится сообщение «Err 14», а светящиеся светодиоды указывают на номер (1, 2, или 3) неисправного канала ввода/вывода. Возможная причина — неисправность датчика положения исполнительного механизма, обрыв цепи управления, залипание контактов реле и т.д.

Перед устранением причины не забудьте выключить Преобразователь. Только после устранения причины и выключения питания сбрасывается признак «Err 14».

8 Ввод значений уровня дозирования "LEVELS"

Вход в этот пункт меню должен осуществляться перед началом выполнения алгоритма дозирования. Вход осуществляется по паролю. После ввода пароля в левой части индикатора высвечивается номер параметра, а в правой части — ранее введённое значение веса.

Ном.	Для суммирующего дозатора " A0 , A1 , A4 , A5 "	Для вычитающего дозатора " A2 , A3 "
0	Значение дозы	Значение дозы
1	Предварение для ка- нала «Грубо»	Предварение для кана- ла «Грубо»
2	Предварение для ка- нала «Точно»	Предварение для кана- ла «Точно»
3	Минимальный вес	Вес перед началом до- зирования

Процесс ввода **нового** значения веса начинается с очистки индикатора кнопкой **ООО**. Затем кнопкой или методом перебора устанавливается и кнопкой сдвигается в нужный разряд требуемое значение. Процесс

ввода завершается кнопкой . После нажатия на эту кнопку Преобразователь производит проверку введенного значения на его допустимость. Например, если оператор ввел значение параметра 1 (предварение), превышающее параметр 0 (доза), то на индикатор будет выведено в течении 3 сек. сообщение: «Err 4». После этого происходит возврат к вводу параметра 0.

После ввода или просмотра всех значений на индикатор выводится запрос: сохранить? – «**SAVE**». У Вас есть три варианта действий:

- а) сохранить введенные данные, нажав на кнопку
- b) отказаться от сохранения данных, нажав на кнопку **УОЧ**, Тогда Преобразователь загрузит из энергонезависимой памяти старое значение данных;
- с) вернуться к вводу параметра **0**, нажав на кнопку

Если Вы нажали на кнопку шли №, на индикаторе отобразится: « •». У Вас есть два варианта действий:

- а) вернуться к вводу параметра **0**, нажав на кнопку 🔼;
- b) выйти из пункта ввода уровней дозирования, нажав на кнопку ►О≺. Тогда Преобразователь вернётся в меню сервисного режима (на индикаторе появится «LEVELS»).

9 Управление дискретными выходами "ContrL"

Вход в этот пункт меню должен осуществляться перед началом выполнения алгоритма дозирования. Вход

осуществляется по паролю. После ввода пароля на индикаторе отображается первый пункт подменю «**ALGor**» – выбора алгоритма управления дискретными выходами и установки логического уровня дискретных входов. Если на-

жать на кнопку или отобразится второй пункт подменю «**TESTou**» – тестирование дискретных входов/выходов.

При выборе алгоритма управления в левой части индикатора отображается: «**AL**», а в правой части номер алгоритма:

Ном.	Алгоритм	
0	Простая отсечка «грубо» и «точно»	
1	Суммирующий дозатор	
2	Вычитающий дозатор с автоматической загруз- кой бункера	
3	Вычитающий дозатор, управляемый только по интерфейсу RS-485 и используемый в автоматизированных системах	
4	Суммирующий дозатор с загрузкой по первой команде «пуск» и выгрузкой по второй команде «пуск»	
5	Суммирующий дозатор, аналогичный AL 1 , но с автоматической настройкой предварений.	

Для изменения номера алгоритма используйте кнопки или , а для выбора – кнопку ...

Во всех алгоритмах управления дискретными выходами кроме алгоритма "0" проверяется соответствие входного сигнала (от датчиков положения исполнительных механизмов) управляющему воздействию, что позволяет своевременно сигнализировать оператору о неисправности канала управления. Например, если выданная Преобразователем команда на включение (выключение) исполнительного ме-

ханизма не исполнится, тогда на выходе датчика положения сигнал не изменится. В этом случае соответствие нарушилось, на индикатор выводится сообщение об ошибке – **Err 14**.

Входные ответные сигналы (логические уровни) зависят от типа датчика положения. Для датчиков, которые замыкают входную цепь в исходном положении, установите логический ноль. Для датчиков, которые размыкают входную цепь в исходном положении, установите логическую единицу. Если Вы не используете датчик положения, установите перемычку между соответствующим входом и выходом и установите для входов логические уровни «1».

Для установки соответствующих логических уровней используется следующий пункт. Сначала в правой части индикатора отображается установленный ранее логический уровень для входа 1 (in1). Для изменения уровня используйте кнопки или , а для выбора – кнопку .

После выбора на индикаторе отобразится установленный логический уровень для входа 2 (**in2**).

После выбора логического уровня последнего входа (in3) на индикаторе отобразится запрос: сохранить? – «SAVE». У Вас есть три варианта действий:

- а) сохранить установленные уровни, нажав на кнопку
- b) отказаться от сохранения, нажав на кнопку ►О≺І. Тогда Преобразователь загрузит из энергонезависимой памяти старые значения;
- с) вернуться к начальному пункту меню **AL**, нажав на кнопку

Если Вы нажали на кнопку шли о, на индикаторе отобразится: « о». У Вас есть два варианта действий:

- а) вернуться к начальному пункту меню **AL**, нажав на кнопку
- b) выйти из пункта меню, нажав на кнопку ►О≺. Тогда Преобразователь вернётся в меню сервисного режима (на индикаторе появится «ContrL»).

Если Вы **не используете** датчики положения, для всех алгоритмов кроме 0 установите перемычки между:

- Выходом 1 и входом 1
- Выходом 2 и входом 2
- Выходом 3 и Входом 3

Для входов, на которые установлены перемычки, необходимо задать логические уровни «1».

Для контроля дискретных выходов используйте пункт меню «TESTou» — тестирование дискретных входов/выходов. При выборе этого пункта на индикаторе отобразится: «OUt 1» и включится Выход 1. Для тестирования следующего выхода нажмите на кнопу « » или « ». На индикаторе отобразится: «OUt 2», включится Выход 2, а Выход 1 выключится. Снова нажать на кнопку « » или « » — на индикаторе отобразится: «OUt 3», включится Выход 3, а Выход 2 выключится и т.д. Для прекращения тестирования выходов нажмите на кнопку » — .

10 Ввод дополнительных параметров "PAr A"

Вход в этот пункт меню должен осуществляться перед началом выполнения алгоритма дозирования. Вход осуществляется по паролю. После ввода пароля в левой части индикатора выводится номер, а в правой части -

значение вводимого параметра:

Номер	Значение		
	Наименование		
5	Сетевой адрес	1127	
		0 – 4800 бод	
6	Croposti Boposoliu	1 – 9600 бод	
	Скорость передачи	2 – 19200 бод	
		3 – 57600 бод	
7	Фильтр для «Грубо» ³	4128	
8	Фильтр для «Точно» 4	4128 (не менее «Грубо»)	
9	Время ожидания стабилизации	1 = 0,512 сек.; 2 = 1,024 сек.; 3	
9	веса	= 1,536 сек.; 63 = 32,256 сек.	
10	Разрешение ввода дозы по	0 – запретить	
10	кнопке 🛦	1 – разрешить	
11	Суммирование отвеса ⁵	0 – выгруженного	
''	Суммирование отвеса	1 – загруженного	
	Разрешение одновременной	0 – запретить	
0	загрузки грубо и точно	1 – разрешить	
n	Время блокировки управления	0.5 1.5 cov	
	«Точно»	0,51,5 сек	
Т	Время точной засыпки продукта	3,010,0 сек.	
1	Максимально допустимое время	0 454 4 0 60 0 604	
L	засыпки продукта в дозатор ⁶	0 или 4,060,0 сек.	
	Вес, при котором на аналоговом		
u	выходе сигнал достигает мак-	НПВ/4 НПВ	
	симального значения		

⁶ Параметр **L** для «AL 5». При нулевом значении не используется.

³ Параметр №7 работает, когда **открыт** канал «Грубо».

⁴ Параметр №8 работает, когда **закрыт** канал «Грубо».

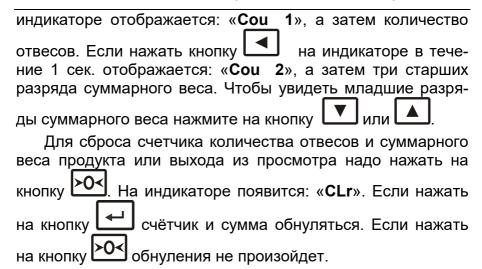
⁵ Только для алгоритма для **AL 1**

Процесс ввода значения для пунктов 4, 6 и 10 осуществляется методом перебора кнопкой или и заканчивается кнопкой Процесс ввода для остальных пунктов аналогичен вводу веса.

Выход из режима осуществляется так же, как указано в предыдущем разделе.

11 Просмотр калибровочных параметров "PAr C"

Вход в этот пункт меню должен осуществляться перед началом выполнения алгоритма дозирования. Вход в пункт меню «Par C» осуществляется без пароля. При этом в левой части индикатора обозначение параметра, а в правой его значение. Для просмотра параметров исполь-


зуйте кнопку 🖳.

Обозна- Наименование	
чение	
d	Дискретность индикации веса
Н	Наибольший предел взвешивания
С	Значение калибровочного веса

Перед выводом на индикатор кода АЦП, соответствующего пустому бункеру отображается «**COEF 1**», а перед выводом приращения кода, соответствующего калибровочному весу – «**COEF 2**».

12 Просмотр и сброс фискальных счетчиков "Count"

Вход в этот пункт меню должен осуществляться перед началом выполнения алгоритма дозирования. Вход в пункт сервисного меню «Count» осуществляется по паролю (см. выше). После ввода пароля в течение 1 сек. на

13 Калибровка "CALibr"

Калибровка описана в Руководстве по калибровке.

14 Описание алгоритмов управления дискретными выходами

14.1. Простая отсечка «Грубо» и «Точно» "AL 0"

В процессе дозирования Преобразователь управляет:

- выходом быстрой подачи продукта в дозатор («Грубо»)
 выход 1;
- выходом медленной подачи продукта в дозатор («Точно») выход **2**;
- выходом **4** («Авария») в случае перегрузки дозатора.

Процесс дозирования разрешается (запускается) двумя способами: переходом сигнала по входу **4** из состояния «выключено» в состояние «включено» или по каналу связи установкой в единицу бита b_eloa регистра FLAGE управления/состояния дозирования (см. карту памяти). Установка этого бита вызывает включение подачи продукта. После

выдачи сигнала на включение этот бит сбрасывается. Если запуск производился по входу **4**, то срабатывает выход «грубо» и «точно» (одновременно или по очереди , в зависимости от настройки пункта «**o**» дополнительных параметров «**Par A**»). Они остаются включенными до снятия сигнала с входа **4**. Если сигнал по входу **4** не снят, продукт загружается в дозатор. Фильтр работает с параметром №7.

Выход быстрой подачи продукта – «Грубо» закрывается при достижении веса (см. Рис. 1):

$$W_{rp} = D - P_{rp}$$

После этого фильтр работает с параметром №8.

Выход медленной подачи продукта – «Точно» закрывается при достижении веса:

$$W_{TOY} = D - P_{TOY}$$

Где: D – вес дозы, введенный в режиме «LEVELS»;

 $P_{\text{точ}}$ – предварение для канала «Точно», введенное в режиме «**LEVELS**»;

 P_{rp} – предварение для канала «Грубо» », введенное в режиме «**LEVELS**»;

Р_{точ} равно значению ячейки Р_pre1 (см. карту памяти);

 P_{rp} равно значению ячейки P_{pre2} (см. карту памяти).

Выгрузкой продукта в этом режиме Преобразователь не управляет.

14.2. Суммирующий дозатор "AL 1"

В режиме измерения веса может выполняться один или несколько циклов дозирования в зависимости от состояния сигнала управления (см. ниже). В процессе дозирования Преобразователь управляет:

- Выходом быстрой подачи продукта в дозатор («Грубо») – выход **1**;

- Выходом медленной подачи продукта в дозатор («Точно») выход **2**;
- Выходом выгрузки продукта из дозатора выход 3;
- Выходом **4** («Авария») в случае перегрузки дозатора.

Для нормального функционирования **необходимо** на входы 1, 2, 3 подать сигналы с датчиков положения.

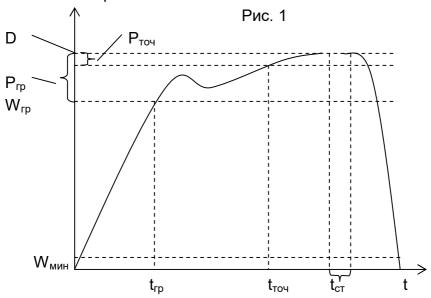
Процесс дозирования разрешается (запускается) двумя способами: внешним сигналом по входу 4 или по каналу связи установкой в единицу бита b_eloa регистра FLAGE управления/состояния дозирования (см. карту памяти). Если сигнал управления по входу 4 подать, а потом снять после открытия выхода загрузки, произойдёт выполнение только одного цикла дозирования. Если сигнал по входу 4 подать и не выключать (не сбросить бит b_eloa), то выполняется непрерывное выполнение циклов дозирования.

Цикл дозирования начинается с обнуления показаний веса. Обнуление происходит, если показания веса меньше W_{мин}. Значение W_{мин} вводится в режиме «**LEVELS**» параметр «**3**». Если вес продукта, находящегося в дозаторе, превышает это значение, то обнуления не происходит. Затем открываются выходы быстрой подачи продукта в дозатор — «Грубо» и медленной подачи — «Точно» одновременно или по очереди, в зависимости от настройки пункта «**o**» дополнительных параметров «**Par A**». Продукт загружается в дозатор. Фильтр работает с параметром №7.

Выход быстрой подачи продукта – «Грубо» закрывается при достижении веса (см. Рис. 1):

$$W_{rp} = D - P_{rp}$$

После этого фильтр работает с параметром №8.


Выход медленной подачи продукта – «Точно» закрывается при достижении веса:

$$W_{TOY} = D - P_{TOY}$$

Где: D – вес дозы, введенный в режиме «LEVELS»;

 $P_{\text{точ}}$ – предварение для канала «Точно» , введенное в режиме «**LEVELS**».

 P_{rp} — предварение для канала «Грубо», введенное в режиме «**LEVELS**».

После закрытия выходов «Грубо» и «Точно» происходит анализ стабилизации показаний веса. Если показания оставались стабильны в течение времени $t_{\rm ct}$, то срабатывает выход выгрузки продукта. Если стабилизации показаний веса не происходит, то выход выгрузки срабатывает по истечении времени четырех $t_{\rm ct}$. Время ожидания стабилизации устанавливают в режиме «**Par A**», пункт **9**.

После срабатывания канала выгрузки продукта ожидается снижение веса ниже W_{мин.}, после чего выход выгрузки

⁷ Величины предварения канала «Грубо» и «Точно» зависят от скорости загрузки продукта в дозатор и определяются опытным путем при пробном дозировании для каждого канала отдельно при нулевых введенных значениях предварения. После пробного дозирования разница между фактически набранным весом и введенным весом дозы и есть значение предварения.

закрывается.

Цикл дозирования закончен. Если сигнал разрешения (запуска) дозирования не снят – начинается новый цикл дозирования.

14.3. Вычитающий дозатор с автоматической загрузкой бункера "AL 2"

В этом режиме вне зависимости от состояния сигнала «Пуск» производится загрузка продукта в дозаторный бункер, если текущий вес меньше дозы. Вес, загружаемый в бункер, определяется параметром 3 меню «LEVELS».

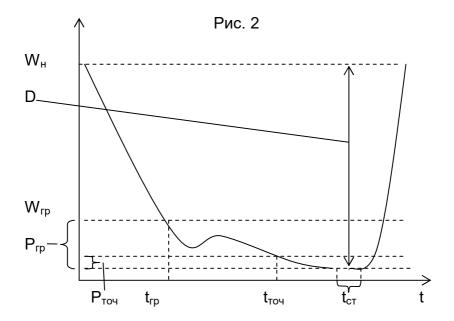
В процессе дозирования Преобразователь управляет:

- выходом 4 («Авария») в случае перегрузки дозатора;
- выходом загрузки продукта в дозатор выход **3**;
- выходом быстрой выгрузки продукта из дозатора («Грубо») выход **1**;
- выходом медленной выгрузки продукта из дозатора («Точно») выход **2**.

Для нормального функционирования **необходимо** на входы 1, 2, 3 подать сигналы с датчиков положения.

Процесс дозирования разрешается (запускается) двумя способами: внешним сигналом по входу 4 или по каналу связи установкой в единицу бита b_eloa регистра FLAGE управления/состояния дозирования (см. карту памяти). Если сигнал управления по входу 4 подать, а потом снять, произойдёт выполнение только одного цикла дозирования. Если сигнал по входу 4 подать и не выключать (не сбросить бит b_eloa), то выполняется непрерывное выполнение циклов дозирования.

Цикл дозирования начинается с момента открывания двух выходов: быстрой выгрузки продукта из дозатора – «Грубо» и медленной выгрузки – «Точно». Продукт выгружается из дозатора. Фильтр работает с параметром №7.


Выход быстрой выгрузки продукта закрывается при снижении веса (см. Рис. 2):

$$W_{rp} = W_H - (D - P_{rp})$$

После этого фильтр работает с параметром №8.

Выход медленной выгрузки продукта закрывается при снижении веса:

$$W_{TOH} = W_H - (D - P_{TOH})$$

Где:

W_н – вес бункера перед началом дозирования;

D – вес дозы, введенный в режиме «LEVELS»;

 $P_{\text{точ}}$ – предварение для канала «Точно», введенное в режиме «**LEVELS**»;

 P_{rp} — предварение для канала «Грубо», введенное в режиме «**LEVELS**».

После закрывания выходов происходит анализ стабилизации показаний веса. Если показания оставались стабильны в течение времени $t_{\rm ct}$, и вес оставшегося продукта меньше дозы, то откроется выход загрузки продукта. Если стабилизации показаний веса не происходит, то выход откроется по истечении времени четырех $t_{\rm ct}$. Время анализа стабилизации устанавливают в режиме «**Par A**», пункт **9**.

Цикл дозирования закончен. Если сигнал разрешения (запуска) дозирования не снят – начинается новый цикл дозирования.

14.4. Вычитающий дозатор с загрузкой бункера после подачи сигнала пуск "AL 3"

Этот режим отличается от предыдущего тем, что используется в системах, где команда пуск выдается по каналу RS-485. По этому же каналу производится установка уровней дозирования. При этом дискретный вход 3 не используется.

14.5. Суммирующий дозатор с загрузкой бункера по первой команде пуск и выгрузкой по второй команде пуск "AL 4"

В режиме измерения веса Преобразователь управляет:

- выходом быстрой подачи продукта в дозатор («Грубо») выход **1**;
- выходом медленной подачи продукта в дозатор («Точно») выход **2**;
- выходом выгрузки продукта из дозатора выход 3;
- ключом выхода **4** «Доза набрана».

Для нормального функционирования **необходимо** на вход **1**, **2** и **3** подать сигнал с датчика положения исполнительного механизма. Если датчики положения не используются, установите перемычки между соответствующими входами и выходами, а в сервисном режиме, в пункте меню

«ContrL» задайте логические уровни «1» для входов 1, 2 и 3.

Вход **4** — сигнал «Пуск». Выполняется при кратковременном замыкании этого входа на минус источника питания. Запуск также может осуществляться по каналу связи установкой в единицу бита b_eloa регистра FLAGE управления/состояния дозирования (см. карту памяти). Этот бит сбрасывается в начале выполнения цикла.

Цикл загрузки начинается с обнуления показаний веса. Обнуление происходит, если показания веса меньше W_{мин}. Значение W_{мин} вводится в режиме «**LEVELS**», параметр «З». Если вес продукта, находящегося в дозаторе, превышает это значение, то обнуления не происходит. Затем открываются два выхода: быстрой подачи продукта в дозатор – «Грубо» и медленной подачи – «Точно». Продукт загружается в дозатор. Фильтр работает с параметром №7.

Выход быстрой подачи продукта закрывается при достижении веса (см. Рис. 1):

$$W_{rp} = D - P_{rp}$$

После этого фильтр работает с параметром №8.

Выход медленной подачи продукта закрывается при достижении веса:

$$W_{TOY.} = D - P_{TOY}$$

Где: D – вес дозы, введенный в режиме «LEVELS»;

 $P_{\text{точ}}$ – предварение для канала «Точно», введенное в режиме «**LEVELS**».

 P_{rp} – предварение для канала «Грубо», введенное в режиме «**LEVELS**».

После закрытия выходов происходит анализ стабилизации показаний веса. Если показания оставались стабильны в течение времени $t_{\rm ct}$, то срабатывает ключ выхода $\mathbf{4}$ –«Доза набрана» и ожидается подача второй команды «Пуск». Если стабилизации показаний веса не происходит,

то ключ выхода **4** откроется по истечении времени четырех $t_{\text{ст}}$. Время анализа стабилизации устанавливают в режиме «**Par A**», пункт **9**.

Если доза набрана и подана вторая команда «Пуск», открывается выход выгрузки. При достижении показаний веса порога, установленного в «LEVELS 3» и успокоении показания веса, выход выгрузки закрывается. К счетчику отвесов прибавляется единица, а к ячейке суммарного продукта прибавляется значение веса высыпанного продукта. После чего ожидается новая команда «Пуск».

14.6. Суммирующий дозатор с автоматической настройкой предварений "AL 5"

При вводе в эксплуатацию дозатора в этом режиме, а также при изменении значений пунктов 7 и 8 «Par A», необходимо сначала установить требуемое время точной загрузки — «Par A» пункт t и максимально допустимое время загрузки продукта в дозатор — «Par A» пункт L, установить требуемое значение дозы и обнулить предварение «Грубо». Нулевое значение предварения запускает режим «обучения» дозатора, который необходим для вычисления предварения «Грубо» и «Точно» и записи их в энергонезависимую память. В последующих циклах дозирования Преобразователь производит автоматическую подстройку предварений.

В режиме измерения веса может выполняться один или несколько циклов дозирования в зависимости от состояния сигнала управления (см. ниже). В процессе дозирования Преобразователь управляет:

- выходом быстрой подачи продукта в дозатор («Грубо»)
 выход 1;
- выходом медленной подачи продукта в дозатор («Точно») выход 2;
- выходом выгрузки продукта из дозатора выход 3;

- выходом **4** («Авария») в случае перегрузки дозатора.

Для нормального функционирования **необходимо** на входы 1, 2, 3 подать сигналы с датчиков положения исполнительных механизмов.

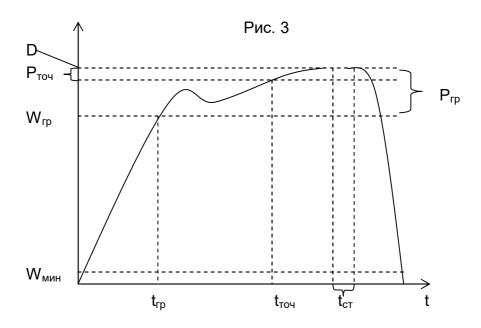
Процесс дозирования разрешается (запускается) двумя способами: внешним сигналом по входу 4 или по каналу связи установкой в единицу бита b_eloa регистра FLAGE управления/состояния дозирования (см. карту памяти). Если сигнал управления по входу 4 подать, а потом снять после открытия выхода загрузки, произойдёт выполнение только одного цикла дозирования. Если сигнал по входу 4 подать и не выключать (не сбросить бит b_eloa), то выполняется непрерывное выполнение циклов дозирования.

Цикл дозирования начинается с обнуления показаний веса. Обнуление происходит, если показания веса меньше W_{мин}. Значение W_{мин} вводится в режиме «**LEVELS**», параметр «**3**». Если вес продукта, находящегося в дозаторе, превышает это значение, то обнуления не происходит. Затем открываются два выхода: быстрой подачи продукта в дозатор – «Грубо» и медленной подачи – «Точно». Продукт загружается в дозатор. Фильтр работает с параметром №7.

Выход быстрой подачи продукта закрывается при достижении веса (см. Рис. 3):

$$W_{rp} = D - P_{rp}$$

После этого фильтр работает с параметром №8.


Выход медленной подачи продукта закрывается при достижении веса:

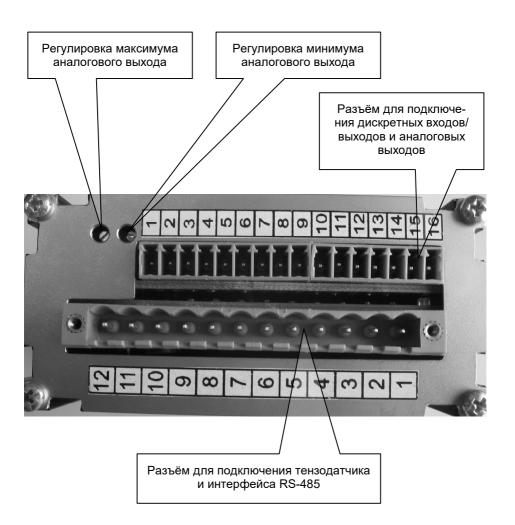
$$W_{TOY} = D - P_{TOY}$$

Где: D – вес дозы, введенный в режиме «LEVELS»;

Р_{точ} – предварение для канала «Точно».

P_{гр} – предварение для канала «Грубо.

После прекращения подачи продукта происходит анализ стабилизации показаний веса. Если показания оставались стабильны в течение времени $t_{\rm cr}$, то откроется выход выгрузки продукта. Если стабилизации показаний веса не происходит, то выход откроется по истечении времени четырех $t_{\rm cr}$. Время ожидания стабилизации устанавливают в режиме «**Par A**», пункт **9**. Кроме того, в момент открывания выхода выгрузки происходит коррекция предварений для следующего цикла дозирования.


После открывания выхода выгрузки продукта ожидается снижение веса ниже $W_{\text{мин}}$, после чего выход выгрузки закрывается.

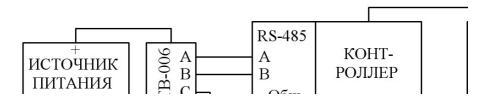
15 Приложения

15.1. Возможные сообщения об ошибках

Сообщение	Неисправность	Методы устранения
Err 2	ошибка контрольной суммы энергонезависимой памяти	нажать кнопку и произвести настройку или калибровку преобразователя (см. Руководство по калибровке)
Err 3	Обнуляемый вес превышает допустимое значение	Проверить параметр 3 « LEVELS » или произвести калибровку нуля
Err 4	Ошибка ввода значения	Ввести новое значение
Err 10	неисправность АЦП	обратиться к изготовителю
Err 11	Не подключен тензометрический датчик(и)	Подключить датчик и на- жать на кнопку 🚭
Err 14		Проверить датчик положения, выходной ключ управления исполнительным механизмом, наличие контакта в этих соединениях, проверить настройки логических уровней входов in1, in2, in3 (см. меню «ContrL»). Выключить и включить питание.

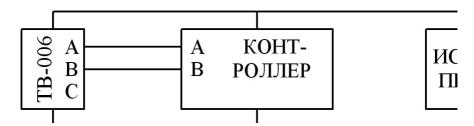
15.2. Задняя сторона ТВ-006С

Tool Tradita fortate Korimakirioo Traxiireeo piroa kirekiki					
№ контакта	Обозначение	Назначение			
1	+Д	Выход датчика +			
2	-Д	Выход датчика -			
3	+OC	Обратная связь +			
4	-OC	Обратная связь -			
5	+ПД	Питание датчика +			
6	-ПД	Питание датчика -			
7	_ _	Контур заземления			
8	Линия А	Интерфейс RS-485			
9	Линия В	Интерфейс RS-485			
10	Линия С	Интерфейс RS-485			
11	-U	Питание – 24В			
12	+U	Питание +24В			


15.3. Назначение контактов нижнего ряда клемм

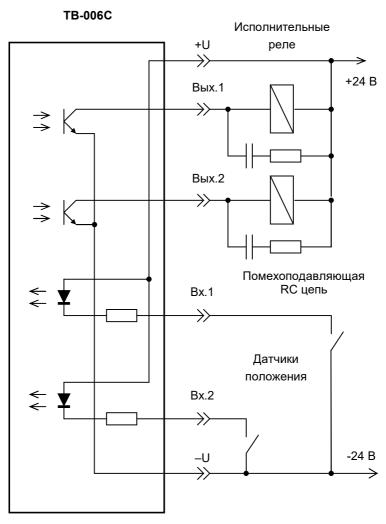
При использовании тензометрического датчика с четырехпроводным кабелем необходимо объединить между собой контакты 3 и 5, а также 4 и 6 соответственно.

<u>Экранную оплетку кабеля датчика соединить с контуром заземления. С этим контуром должен быть соединен бункер дозатора.</u>

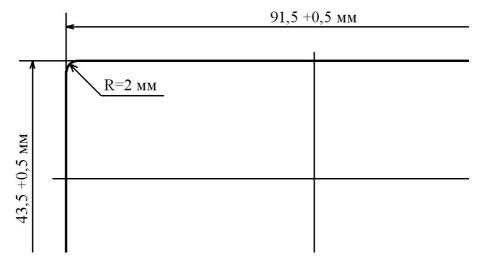

Внимание: не допускается использование интерфейса RS-485 без линии "С" – общего провода интерфейса! Отсутствие общего провода между RS-485 может привести к выходу их из строя.

ПИТАНИЕ УСТРОЙСТВ ОТ ОТДЕЛЬНЫХ ИСТОЧНИ

Функцию общего провода RS-485 может выполнять общий провод источника питания, к которому подключены эти устройства:


ПИТАНИЕ УСТРОЙСТВ ОТ ОДНОГО ИСТО

15.4. Назначение контактов верхнего ряда клемм


№ Конт.	Цепь	Назначение
1	Общ.	Общий провод аналогового выхода
2	Выход U	Аналоговый выход напряжения
3	Выход I	Аналоговый выход тока
4	-U	Питание аналогового выхода – 24В
5	+U	Питание аналогового выхода + 24В
6		
7	+U	Питание дискрет. входов/выходов +24В
8	Вход 1	Положение канала «Грубо»/«Инф.»
9	Вход 2	Положение канала «Точно»/«Инф.»
10	Вход 3	Положение канала «Выгр/Загр»
11	Вход 4	Разрешение (запуск) дозирования
12	Выход 1	Управление каналом «Грубо»
13	Выход 2	Управление каналом «Точно»
14	Выход 3	Управление каналом. «Выгр/Загр»
15	Выход 4	Сигнал «Авария»
16	-U	Питание дискрет. входов/выходов -24В

15.5. Пример подключения входов/выходов

Включенному состоянию сигнала соответствует протекание тока по входной или выходной цепи.


15.6. Отверстие для установки ТВ-006С

15.7. Протокол обмена стандарта «Тензо-М»

Количество битов данных – 8 Количество стоповых битов –1 или 2 Бит четности/нечетности – отсутствует

Структура кадра обмена данными между ПК и Преобразователем.

Где: FF – разделитель (код FFh в шестнадцатеричном формате). Adr – сетевой адрес устройства (1 байт в двоичном формате). Если первый байт поля адреса устройства равен 0, то это значит, что данный кадр имеет расширенное поле адреса (см. ниже). COP – код операции (1 байт в двоичном формате).

Data – содержательная часть информационного кадра. Данная часть состоит из числовых данных (вес, код АЦП и т.д.), и байтов состояния.

CRC – контрольная сумма (1 байт в двоичном формате).

Структура кадра для расширенного поля адреса приводится в виде следующей таблицы:

FF 0 SN0 SN1 SN2 COP Data CRC FF	FF
----------------------------------	----

Где: SN0...SN2 – младший, средний и старший байты серийного номера устройства в двоичном формате.

Назначение остальных байтов кадра аналогично обычному кадру.

Разделителей в начале и в конце кадра может быть несколько. Признаком начала кадра является байт отличный от разделителя (FFh), но не равный FEh, т.е. приемная сторона в потоке принятых байт находит байты разделители, а затем находит первый байт отличный от FFh, но не равный FEh. Этот байт и является первым байтом кадра. При этом подразумевается, что первый байт кадра (поле адреса) не может принимать значение разделителя (FFh) и FEh.

Признаком конца кадра при приеме является получение подряд двух байт разделителя (FFh), т.е. приемная сторона в процессе приема текущего кадра следит за появлением двух подряд байт разделителей (FFh). Определив конец кадра - проверяет контрольную сумму. Если кадр принят без ошибки, анализирует поле адреса. Если адрес не совпадает с адресом приемной стороны – кадр игнорируется. Кроме того, приемная сторона должна отслеживать длину кадра, которая не может превышать 255 байт. Кадр длинной более 255 байт игнорируется, и приемная сторона переходит к поиску разделителей.

Если в поле расширенного адреса кода операции, данных или CRC встречается FFh, то на передающем конце после него вставляется код FEh, а на приемном конце он выбрасывается. По вставленному и выброшенному FEh CRC не вычисляется.

```
Ниже приведен пример формирования CRC в виде ассемблерной вставки для C++
```

```
BYTE CDeviceTestDlg::CRCMaker(BYTE b input, BYTE b CRC)
  asm
       {
              mov
                     al.b input
                     ah,b CRC
              mov
                     cx.8
              mov
mod1:
              rol
                     al,1
              rcl
                     ah,1
                     mod2
              inc
                     ah,69h
              xor
mod2:
              dec
                     CX
              inz
                     mod1
              mov
                     b CRC,ah
       return b CRC;
```

При формировании CRC используется примитивный неприводимый порождающий полином в 9-й степени P(X)-101101001b (169h). На передающей стороне в конце массива используется нулевой байт (00h). Подставляя в переменную b_input байты массива, включая нулевой байт, вычисляется CRC код с помощью подпрограммы CRCMaker. При передаче массива нулевой байт заменяется вычисленным байтом CRC. На принимающей стороне вычисляют CRC, подставляя в b_input байты принятого массива, включая принятый CRC код. Если вычисленный CRC будет равен нулю, то массив принят правильно. В начале приема/передачи перед вычислением CRC в переменную b_CRC записывается ноль.

Команды и запросы

«Обнулить показания текущего веса»:

Запрос: Adr, COP, CRC; **Ответ:** Adr, COP, CRC

Где: COP – C0h (код операции);

«Передать вес канала «Точно»:

Запрос: Adr. COP, CRC

OTBET: Adr, COP, W0, W1, W2, CON, CRC,

Где: COP - C3h (код операции),

W0...W2 - младший, средний и старший байты веса канала

«Точно» в ВСD – формате.

CON - байт знака, признака успокоения, признака перегруза и по-

зиции десятичной точки в двоичном формате.

Распределение по битам байта CON:

D7	D6	D5	D4	D3	D2	D1	D0
SIGN	Х	Х	STABIL	OVERL	POZ2	POZ1	POZ 0

Где: SIGN – бит знака. Если SIGN = 1, то вес отрицательный.

STABIL – признак успокоения; если STABIL = 1, то есть стабили-

зация веса.

OVERL – признак перегруза; если OVERL = 1, то есть перегруз.

POZ0...POZ2 - биты позиции десятичной точки:

POZ2	POZ1	POZ0	Позиция точки
0	0	0	Нет знаков после точки
0	0	1	Один знак после точки
0	1	0	Два знака после точки
0	1	1	Три знака после точки
1	0	0	Четыре знака после точки
1	0	1	Пять знаков после точки
1	1	0	Шесть знаков после точки
1	1	1	Семь знаков после точки

Пример: 05, 00, 00, 91 соответствует следующим параметрам: вес минус 0.5 Кг, есть стабилизация веса.

«Передать вес канала «Грубо»:

Запрос: Adr, COP, CRC

OTBET: Adr, COP, W0, W1, W2, CON, CRC,

Где: COP - C2h (код операции)

«Передать состояние дискретных входов»:

Запрос: Adr, COP, CRC; **Ответ:** Adr, COP, INP, CRC

Где: COP – C4h (код операции); INP – байт состояния входов.

«Передать состояние дискретных выходов»:

Запрос: Adr, COP, CRC;

Ответ: Adr, COP, OUT, CRC

Где: COP – C5h (код операции);

OUT – байт состояния выходов.

«Передать индицируемый вес и состояние дискретных входов и выходов»:

Запрос: Adr, COP, I_O, CRC;

OTBET: Adr, COP, W0, W1, W2, CON, IN_OU, CRC

Где: COP – CAh (код операции);

I_O – если этот байт равен 8, передать вес и состояние входов и выходов. Если равен 0 – передать только вес;

W0...W2 – младший, средний и старший байты веса в BCD – формате, который отображается на индикаторе Преобразователя.

CON - байт знака, признака успокоения, признака перегруза и позиции десятичной точки в двоичном формате.

IN OU – байт состояния входов и выходов.

Распределение по битам байта IN OU:

Ī	D7	D6	D5	D4	D3	D2	D1	D0
	OUT4	OUT3	OUT2	OUT1	INP4	INP3	INP2	INP1

«Запрос значения кода АЦП»:

Запрос: Adr, COP, N, CRC;

Ответ: Adr, COP, A0, A1...An, CRC Где: COP – CCh (код операции);

N – номер канала (1 – текущий код, 2 – приращение кода);

A0, A1...An – значение кода (A0 – младший байт

кода, An – старший байт кода).

«Читать несколько регистров»:

Запрос: Adr, COP, ARH, ARL, N, CRC;

Ответ: Adr, COP, N, B1, B2...Bn, CRC

Где: COP – B5h (код операции);

ARH, ARL – начальный адрес регистров (ARH – старший байт

адреса, ARL – младший байт адреса, см. карту памяти)

N – количество регистров (байт), не более 250;

В1, В2...Вп – значение (содержимое) регистров (байт).

«Записать несколько регистров»:

Запрос: Adr, COP, ARH, ARL, N, B1, B2...Bn, CRC;

Ответ: Adr, COP, ARH, ARL, N, CRC Где: COP – B6h (код операции);

ARH, ARL – начальный адрес регистров (ARH – старший байт

адреса, ARL – младший байт адреса, см. карту памяти)

N – количество регистров (байт), не более 250;

В1, В2...Вп – значение (содержимое) регистров (байт).

«Записать значения уровней дозирования»:

3anpoc: Adr, COP, NLEV, L1, L2, L3, H1, H2, H3, CRC;

Ответ: Adr, COP, CRC

Где: COP - D1h (код операции);

L1, L2, L3 – любое значение

Н1, Н2, Н3 – младший, средний и старший байт уровня.

NLEV – номер:

NLEV	Назначение (см. карту памяти)			
0	P_leep0 – значение дозы (параметр 0 « LEVELS »)			
1	P_levr – значение отсечки грубо			
2	P_levp – значение отсечки точно			
3	P_leep3 – минимальный/начальный вес (параметр 3 « LEVELS »)			

«Команда старт/стоп»:

Запрос: Adr, COP, SST, CRC;

Ответ: Adr, COP, CRC

Где: COP – DFh (код операции);

SST(байт): 0 – стоп, 1 – старт. Устанавливает бит b_eloa FLAGE;

«Тип устройства и версии ПО»:

Запрос: Adr, COP, CRC.

OTBET: Adr, COP, NAME, Vers, CRC.

Где: COP – FDh (код операции); NAME – название прибора;

Vers – номер версии программного обеспечения. Первым пере-

дается первый символ строки. Пример: Adr, FDh, TB006 V1.06, CRC

«Ответ на запрос с кодом команды, не поддерживаемым данным устройством»:

Ответ: соответствует ответу на команду с кодом FDh.

Редакция от 17.04.2019